

CSTEP's analysis on

Pricing Mechanism of Pumped-hydro storage in India

Introduction

□ India plans to install 450 GW of renewables by 2030.

- Pumped hydro energy storage (PHES) is an available and mature energy storage technology
- The probable capacity of PHES in India is 96.5 GW

Operational PHES in India	Туре		
Nagarjuna Sagar, Telangana	705 MW, Open loop		
Srisailam, Telangana	900 MW, open-loop		
Ghatghar, Maharashtra	250 MW, open-loop		
Bhira, Maharastra	150 MW, open-loop		
Kadamparai Tamil Nadu	400 MW, open-loop		
Purulia, West Bengal	900 MW. Closed loop		

Motivation & Objective

- Motivation
 - The pace of development of PHES in India has been tepid
 - Due to high initial investment, environment clearance issues, and low recovery from current pricing mechanism
 - Current tariff system based on the amount of energy generation from PHES
 - Do not take into account the grid flexibility aspects of PHES
- Objective
 - Develop a pricing mechanism for PHES in India with high penetration of renewables
 - Revenue to be based on variable cost
 - Mechanism to be developed for specific use-cases:
 - Peaking operation
 - Renewable Smoothing

Tariff computation for peak load shaving

Case Study: Uttarakhand

Particulars		Maximizing the profit	Peaking Operation	
Consumption cost (Buying from IEX) (Rs)		96,29,168.68	96,29,168.68	
Selling cost from IEX (Rs)		1,41,58,222.3	1,19,67,113.87	
Profit/Loss with POC & IEX charges		38,25,323.22	16,34,214.74	
With POC charges	Avg. Peak tariff (Rs/kWh)	3.94	3.32	
	Avg. Off-Peak tariff (Rs/kWh)	2.15	2.15	

Pricing variability across years

- If there is no saving potential then no need to bid in market
- For the Uttarakhand case study
 - Price averaged for the highest 16 minute time blocks for a day for 2019 & 2020
 - Price averaged for the lowest 28 minute time blocks for a day for 2019 & 2020

	Days	
Results	2019	2020
No profit generation days	21	53
Ratio of average peak price to off- beak price to generate profit	1.35	1.33
Max profit generated for a day (Rs) Avg. peak price (Rs/kWh) Off-peak price (Rs/kWh)	1,60, 82,247 (15-Jul) 7.5 2.25	96,14,821 (26-Dec) 5.3 1.95
let profit for the year (INR crores)	157	70
6 fixed cost recovery	16	7
		www.cstep.in

Revenue 2020 Revenue 2019

Tariff Computation for RE smoothing

Case Study: Pinnapuram PHES, Andhra Pradesh

- Co-located PHES plants/Grid-connected PHES plants
- Case study: Pinnapuram integrated renewable energy storage plant

Pinnapuram PHES details			
Solar plant (MW)	2000		
Wind plant (MW)	400		
PHES (MW)	1000		
Annual Generation (GWh)	2774		
Annual consumption (GWh)	3645		
Generation duration (h)	8		
Pumping duration (h)	9.22		
Turbine & Pump	6 units (3 fixed & 3 variable speed)		
Efficiency	76%		

Case study – Dispatch Strategy & Pricing Mechanism

• Diurnal variation of RE can be levelled using PHES

PHES pumping energy for the day (MWh)	6819		
Pumping hours(h)	10 (< 1083 MW)		
PHES generation energy (MWh)	4833		
Generation hours (h)	14 (<950 W)		
Efficiency for the day	70.8%		

Pricing Mechanism			
Pumping price (P)	RE cost + interconnection charges		
Generation Price (G)	P+ X		
X	RE curtailment penalty and/or avoided cost from high priced purchase of thermal or gas and/or incentive for providing grid flexibility and/or Generation based incentive		

Case Study – Pricing Mechanism

		Minimum scenario	Intermediate scenario 1	Intermediate scenario 2	Intermediate scenario 3	Maximum scenario
Pumping cost (Rs/kWh)	RE cost (Rs/kWh)	2	2	2.5	2	3
	Interconnection charges	1	1	1	1	1
Compensation (Rs/kWh)	RE curtailment penalty	0	0.5	0.875	1	1.5
	Avoided cost from high priced gas / thermal plants (from AP tariff order)	0.37	0.37	0.37	0.91	0.91
	Grid flexibility incentive	0	0	0.5	0.5	1
	Generation based incentive (GBI)	0	0.5	0.5	0.5	1
Generation cost (Rs/kWh)		3.37	4.37	5.745	5.91	8.41
Profit/Loss (Rs/kWh)		0.37	0.87	2.245	2.91	4.41

Our Recommendations

- A differential pricing mechanism with different pumping and generation prices instead of having only generation based energy charges.
- The profit generation to be used for fixed cost recovery.
- Pricing mechanism for PHES should be based on specific use-cases.

For energy arbitrage/peak load shaving/load following use-case
Operate PHES in market
As for Tehri PHES, there is a fixed-cost recovery of 16% or 7% depending upon the MCP's

□For round-the-clock support/RE smoothing use-case

- PHES is used as grid asset
- Incentives Compensation for avoiding RE curtailment, avoided cost from highpriced purchase of thermal or gas plants, grid flexibility incentive, generationbased incentive
- As for Pinnapuram PHES, profit can be in the range of INR 0.37 to INR 4.41 per unit

Our Recommendations

Alternative funding mechanism for PHES

- An expense distribution model with multiple stakeholders involved reduces the risk
 - Utilization of open-pit coal mines as well as beneficiary owned lands will further reduce the fixed cost
- Budgetary subsidy on viability gap funding
- Foreign direct investment for pumped-hydro project
- On high commissioning cost/environmental concerns of PHES
 - Smaller distributed PHES plants
 - Flexible operation
 - Mitigate delays /cost overruns/legal hurdles/protests due to environmental clearances

Thank you

